Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly

نویسندگان

  • Boris Fichtman
  • Corinne Ramos
  • Beth Rasala
  • Amnon Harel
  • Douglass J. Forbes
چکیده

Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POM121 and Sun1 play a role in early steps of interphase NPC assembly

Nuclear pore complexes (NPCs) assemble at the end of mitosis during nuclear envelope (NE) reformation and into an intact NE as cells progress through interphase. Although recent studies have shown that NPC formation occurs by two different molecular mechanisms at two distinct cell cycle stages, little is known about the molecular players that mediate the fusion of the outer and inner nuclear me...

متن کامل

ER membrane–bending proteins are necessary for de novo nuclear pore formation

Nucleocytoplasmic transport occurs exclusively through nuclear pore complexes (NPCs) embedded in pores formed by inner and outer nuclear membrane fusion. The mechanism for de novo pore and NPC biogenesis remains unclear. Reticulons (RTNs) and Yop1/DP1 are conserved membrane protein families required to form and maintain the tubular endoplasmic reticulum (ER) and the postmitotic nuclear envelope...

متن کامل

Assembly of nuclear pore complexes mediated by major vault protein.

During interphase growth of eukaryotic cells, nuclear pore complexes (NPCs) are continuously incorporated into the intact nuclear envelope (NE) by mechanisms that are largely unknown. De novo formation of NPCs involves local fusion events between the inner and outer nuclear membrane, formation of a transcisternal membranous channel of defined diameter and the coordinated assembly of hundreds of...

متن کامل

Interference with the cytoplasmic tail of gp210 disrupts “close apposition” of nuclear membranes and blocks nuclear pore dilation

We tested the hypothesis that gp210, an integral membrane protein of nuclear pore complexes (NPCs), mediates nuclear pore formation. Gp210 has a large lumenal domain and small COOH-terminal tail exposed to the cytoplasm. We studied the exposed tail. We added recombinant tail polypeptides to Xenopus nuclear assembly extracts, or inhibited endogenous gp210 tails using anti-tail antibodies. Both s...

متن کامل

Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010